Publications of K Borgwardt

Journal Article (30)

21.
Journal Article
Becker, C.; Hagmann, J.; Müller, J.; Koenig, D.; Stegle, O.; Borgwardt, K.; Weigel, D.: Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature 480 (7376), pp. 245 - 249 (2011)
22.
Journal Article
Cao, J.; Schneeberger, K.; Ossowski, S.; Günther, T.; Bender, S.; Fitz, J.; König, D.; Lanz, C.; Stegle, O.; Lippert, C. et al.; Wang, X.; Ott, F.; Müller, J.; Alonso-Blanco, C.; Borgwardt, K.; Schmid, K.; Weigel, D.: Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nature Genetics 43 (10), pp. 956 - 963 (2011)
23.
Journal Article
Shervashidze, N.; Schweitzer, P.; van Leeuwen , E.; Mehlhorn, K.; Borgwardt, M.: Weisfeiler-Lehman Graph Kernels. The Journal of Machine Learning Research 12, pp. 2539 - 2561 (2011)
24.
Journal Article
Kam-Thong, T.; Czamara, D.; Tsuda, K.; Borgwardt, K.; Lewis, C.; Erhardt-Lehmann , A.; Hemmer, B.; Rieckmann, P.; Daake, M.; Weber, F. et al.; Wolf, C.; Ziegler, A.; Pütz, B.; Holsboer , F.; Schölkopf, B.; Müller-Myhsok, B.: EPIBLASTER-fast exhaustive two-locus epistasis detection strategy using graphical processing units. European Journal of Human Genetics 19 (4), pp. 465 - 471 (2011)
25.
Journal Article
Camps-Valls, G.; Shervashidze, N.; Borgwardt, K.: Spatio-Spectral Remote Sensing Image Classification With Graph Kernels. IEEE Geoscience and Remote Sensing Letters 7 (4), pp. 741 - 745 (2010)
26.
Journal Article
Thoma, M.; Cheng, H.; Gretton, A.; Han, J.; Kriegel, H.-P.; Smola, A.; Song, L.; Yu, P.; Yan, X.; Borgwardt, K.: Discriminative frequent subgraph mining with optimality guarantees. Statistical Analysis and Data Mining 3 (5), pp. 302 - 318 (2010)
27.
Journal Article
Stegle, O.; Denby, K.; Cooke, E.; Wild, D.; Ghahramani, Z.; Borgwardt, K.: A Robust Bayesian Two-Sample Test for Detecting Intervals of Differential Gene Expression in Microarray Time Series. Journal of Computational Biology 17 (3), pp. 355 - 367 (2010)
28.
Journal Article
Stegle, O.; Drewe, P.; Bohnert, R.; Borgwardt, K.; Rätsch, G.: Statistical Tests for Detecting Differential RNA-Transcript Expression from Read Counts. Nature Precedings 2010 (2010)
29.
Journal Article
Lippert, C.; Ghahramani, Z.; Borgwardt, K.: Gene function prediction from synthetic lethality networks via ranking on demand. Bioinformatics 26 (7), pp. 912 - 918 (2010)
30.
Journal Article
Vishwanathan, S.; Schraudolph, N.; Kondor, R.; Borgwardt, K.: Graph Kernels. Journal of Machine Learning Research 11, pp. 1201 - 1242 (2010)

Book Chapter (1)

31.
Book Chapter
Borgwardt, K.: Kernel Methods in Bioinformatics. In: Handbook of Statistical Bioinformatics, pp. 317 - 334 (Eds. Lu, H.-S.; Schölkopf, B.; Zhao, H.). Springer, Berlin, Germany (2011)

Proceedings (1)

32.
Proceedings
Borgwardt, K.; Rätsch, G. (Eds.): Sixth International Workshop on Machine Learning in Systems Biology (MLSB 2012). Sixth International Workshop on Machine Learning in Systems Biology at ECCB 2012, Basel, Switzerland, September 08, 2012 - September 09, 2012. (2012)

Conference Paper (18)

33.
Conference Paper
Feragen, A.; Kasenburg, N.; Petersen, J.; de Bruijne, M.; Borgwardt, K.: Scalable kernels for graphs with continuous attributes. In: Advances in Neural Information Processing Systems 26, pp. 216 - 224 (Eds. Burges, C.; Bottou, L.). Advances in Neural Information Processing Systems 26 (NIPS 2013), Lake Tahoe, NV, USA , December 05, 2013 - December 12, 2013. Curran, Red Hook, NY, USA (2014)
34.
Conference Paper
Rakitsch, B.; Lippert, C.; Borgwardt, K.; Stegle, O.: It is all in the noise: Efficient multi-task Gaussian process inference with structured residuals. In: Advances in Neural Information Processing Systems 26, Vol. 2, pp. 1468 - 1476 (Eds. Burges, C.; Bottou, L.; Welling, M.; Ghahramani, Z.; Weinberger, K.). 27th Annual Conference on Neural Information Processing Systems (NIPS 2013), Lake Tahoe, NV, USA, December 05, 2013 - December 10, 2013. Curran, Red Hook, NY, USA (2014)
35.
Conference Paper
Sugiyama, M.; Borgwardt, K.: Rapid Distance-Based Outlier Detection via Sampling. In: Advances in Neural Information Processing Systems 26, Vol. 1, pp. 467 - 475 (Eds. Burges, C.; Bottou, L.; Welling, M.; Ghahramani, Z.; Weinberger, K.). 27th Annual Conference on Neural Information Processing Systems (NIPS 2013), Lake Tahoe, NV, USA, December 05, 2013 - December 10, 2013. Curran, Red Hook, NY, USA (2014)
36.
Conference Paper
Sugiyama, M.; Azencott, C.-A.; Grimm, D.; Kawahara, Y.; Borgwardt, K.: Multi-Task Feature Selection on Multiple Networks via Maximum Flows. In: 2014 SIAM International Conference on Data Mining, pp. 199 - 207 (Ed. Zaki, M.). 2014 SIAM International Conference on Data Mining , Philadelphia, PA, USA, April 24, 2014 - April 26, 2014. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (2014)
37.
Conference Paper
Azencott, C.-A.; Grimm, D.; Kawahara, Y.; Borgwardt, K.: A min-cut solution to mapping phenotypes to networks of genetic markers. In: 17th Annual International Conference on Research in Computational Molecular Biology (RECOMB 2013). 17th Annual International Conference on Research in Computational Molecular Biology (RECOMB 2013), Beijing, China, April 07, 2013 - April 10, 2013. (submitted)
38.
Conference Paper
Feragen, A.; Petersen, J.; Grimm, D.; Dirksen, A.; Pedersen, J.; Borgwardt, K.; Bruijne, M.: Geometric tree kernels: Classification of COPD from airway tree geometry. In: Information Processing in Medical Imaging, pp. 171 - 183 (Eds. Gee, J.; Joshi, S.). 23rd International Conference on Information Processing in Medical Imaging (IPMI 2013), Asilomar, CA, USA, June 28, 2013 - July 03, 2013. Springer, Berlin, Germany (2013)
39.
Conference Paper
Sugiyama, M.; Borgwardt, K.: Measuring Statistical Dependence via the Mutual Information Dimension. In: Twenty-Third International Joint Conference on Artificial Intelligence (IJCAI 2013 ), pp. 1692 - 1698 (Ed. Rossi, F.). Twenty-Third International Joint Conference on Artificial Intelligence (IJCAI 2013 ), Beijing, China, August 03, 2013 - August 09, 2013. AAAI Press, Menlo Park, CA, USA (2013)
40.
Conference Paper
Stegle, O.; Lippert, C.; Mooij, J.; Lawrence, N.; Borgwardt, K.: Efficient inference in matrix-variate Gaussian models with iid observation noise. In: Advances in Neural Information Processing Systems 24, pp. 630 - 638 (Eds. Shawe-Taylor, J.; Zemel, R.; Bartlett, P.; Pereira, F.; Weinberger, K.). Twenty-Fifth Annual Conference on Neural Information Processing Systems (NIPS 2011), Granada, Spain, December 12, 2011 - December 17, 2011. Curran, Red Hook, NY, USA (2012)
Go to Editor View